


Name:

Teacher:



# N5 Physics and Electronics

## Electricity 1 - Circuits

|    | Success Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test | Prelim | Exam |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|------|
| L1 | I can draw the circuit symbol for: cell, battery, lamp, switch, voltmeter, ammeter, motor, microphone, loudspeaker, photovoltaic cell,                                                                                                                                                                                                                                                                                                                                                                     |      |        |      |
| L2 | I can define potential difference (voltage)<br>I can define current<br>I can describe practical applications of series and parallel circuits.<br>I can make measurements of current and voltage using appropriate meters in simple and complex circuits.<br>I can apply the current and voltage relationships in a series circuit.<br>I can apply the current and voltage relationships in a parallel circuit.                                                                                             |      |        |      |
| L3 | I can describe the symbol, function and application of: resistor, variable resistor<br>I can use and ohmmeter to measure resistance<br>I can use resistor colour coding                                                                                                                                                                                                                                                                                                                                    |      |        |      |
| L4 | I can make measurements of IR using appropriate meters in simple and complex circuits.<br>I can make use of a $V$ - $I$ graph to determine resistance.<br>I can make use of an appropriate relationship to calculate potential difference (voltage), current and resistance<br>I can describe the relationship between temperature and resistance of a conductor.<br>I can describe the relationship between temperature and resistance of a resistor.<br>I can describe an experiment to prove Ohm's Law. |      |        |      |
| L5 | I know what happens in a circuit when I increase the resistance in both series and parallel circuits.<br>I can predict the total resistance in a series circuit<br>I can measure the total resistance in a series circuit<br>I can predict the total resistance in a parallel circuit with resistors of the same value<br>I can measure the total resistance in a parallel circuit with resistors of the same value                                                                                        |      |        |      |
| L6 | I know what happens in a circuit when I increase the resistance in both series and parallel circuits.<br>I can predict the total resistance in a series circuit<br>I can measure the total resistance in a series circuit<br>I can predict the total resistance in a parallel circuit with resistors of the same value<br>I can measure the total resistance in a parallel circuit with resistors of the same value                                                                                        |      |        |      |

# L1 - Circuit Symbols

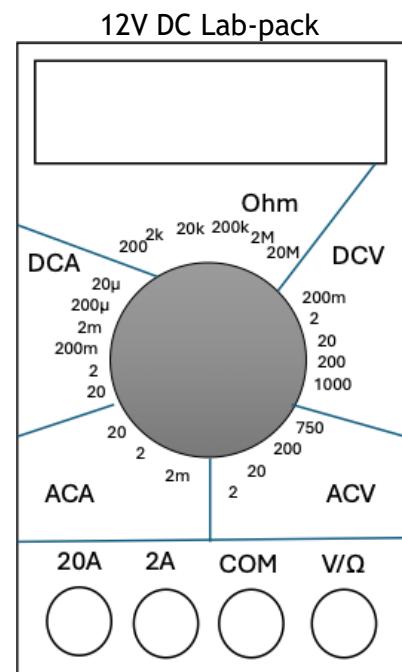
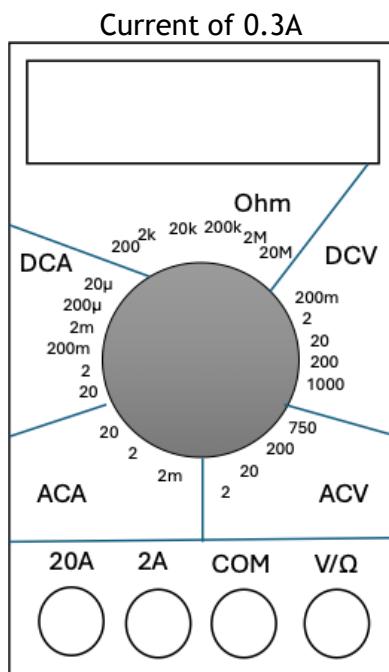
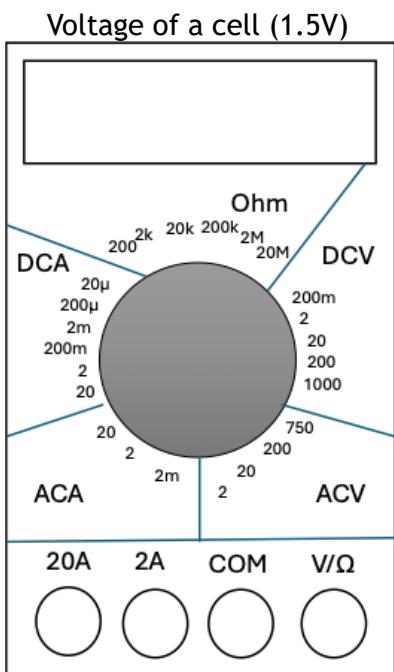
- I can draw the circuit symbol for: cell, battery, lamp, switch, voltmeter, ammeter, motor, microphone, loudspeaker, photovoltaic cell,

**Task 1: Complete the table with the SQA accepted definitions and symbols**

| Component         | Symbol | Function                                                 |
|-------------------|--------|----------------------------------------------------------|
| Cell              |        |                                                          |
| Battery           |        |                                                          |
|                   |        | Converts electrical energy to light energy               |
|                   |        | Opens and closes the circuit                             |
|                   |        | Measures the voltage across a component                  |
| Ammeter           |        |                                                          |
| Motor             |        |                                                          |
| Microphone        |        |                                                          |
| Loudspeaker       |        |                                                          |
| Photovoltaic Cell |        | Converts light energy to electrical energy (Solar Panel) |

**Task 2: Create flashcards for the symbols**

**Task 3: In pairs, or small groups, quiz each other on the symbols**




## L2 - Current and Voltage

- I can define potential difference (voltage)
  - I can define current
  - I can describe practical applications of series and parallel circuits.
  - I can make measurements of current and voltage using appropriate meters
  - I can apply the current and voltage relationships in a series circuit.
  - I can apply the current and voltage relationships in a parallel circuit.

## Task 1: Complete the table with the SQA accepted definitions

| Term                           | Definition                                                          | Symbol | Units |
|--------------------------------|---------------------------------------------------------------------|--------|-------|
| Potential Difference (Voltage) | Energy supplied to each coulomb of _____ passing through the supply |        |       |
| Current                        | The amount of _____ passing a point every second                    |        |       |

**Task 2: On the multimeters below, label the correct ports and position to measure: (Colour)**



### Task 2: Complete the table with the circuit rules.

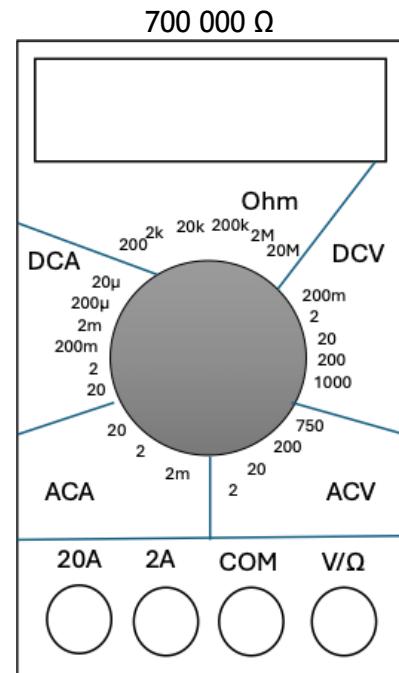
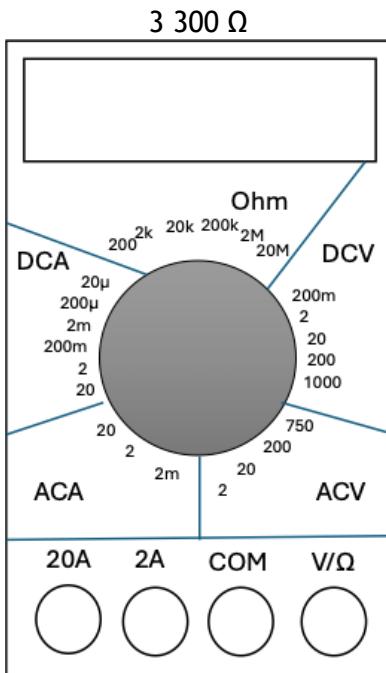
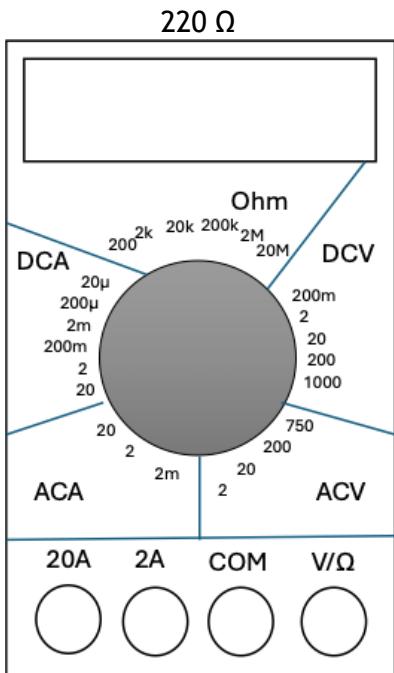
|         | Series | Parallel |
|---------|--------|----------|
| Current |        |          |
| Voltage |        |          |

## L3 - Measuring Resistance

- I can describe the symbol, function and application of: resistor, variable resistor
- I can use and ohmmeter to measure resistance
- I can use resistor colour coding

Task 1: Complete the table with the SQA accepted definitions and symbols

| Component         | Symbol | Function |
|-------------------|--------|----------|
| Resistor          |        |          |
| Variable Resistor |        |          |




Task 2: Complete the table with the SQA accepted definitions

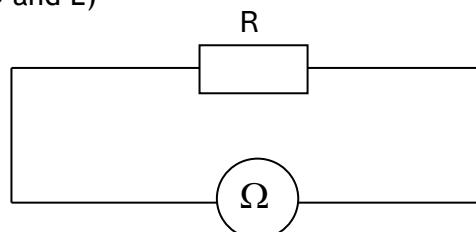
| Term       | Definition                                                         | Symbol | Units |
|------------|--------------------------------------------------------------------|--------|-------|
| Resistance | A measure of how _____ it is for charge to flow through a material |        |       |

Task 3: Complete the following table:

| Resistor Bands |        |        |        | Quoted Resistance | Tolerance  | Maximum Value | Minimum Value |
|----------------|--------|--------|--------|-------------------|------------|---------------|---------------|
| 1              | 2      | 3      | 4      |                   |            |               |               |
| Orange         | Orange | Brown  | Silver |                   |            |               |               |
| Green          | Blue   | Red    | Silver |                   |            |               |               |
| Brown          | Green  | Orange | Gold   |                   |            |               |               |
| Red            | Black  | Orange | Gold   |                   |            |               |               |
|                |        |        |        | 470 $\Omega$      | $\pm 5\%$  |               |               |
|                |        |        |        | 820 $\Omega$      | $\pm 10\%$ |               |               |
|                |        |        |        | 390 k $\Omega$    | $\pm 5\%$  |               |               |

Task 4: On the multimeters below, label the correct ports and position to measure: (Colour)




Task 5: Experiment - Measuring resistance using an ohmmeter

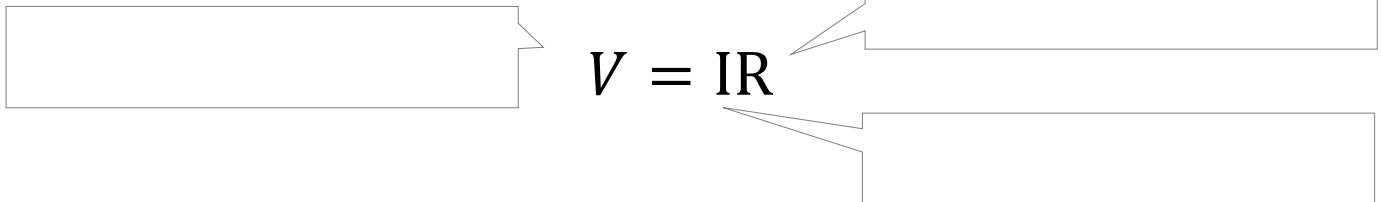
AIM To determine the resistance of a resistor using an ohmmeter.

APPARATUS a digital multimeter  
a set of unknown resistors (label them A, B, C, D and E)

METHOD

- Connect the ohmmeter directly across resistor A.
- Repeat for resistors B, C, D and E.




RESULTS

| Resistor | Quoted Resistance value / $\Omega$ | Tolerance | Measured Resistance value / $\Omega$ | Within tolerance? (Y/N) |
|----------|------------------------------------|-----------|--------------------------------------|-------------------------|
| A        |                                    |           |                                      |                         |
| B        |                                    |           |                                      |                         |
| C        |                                    |           |                                      |                         |
| D        |                                    |           |                                      |                         |
| E        |                                    |           |                                      |                         |

## L4 - Ohms Law

- I can make measurements of IR using appropriate meters in simple and complex circuits.
- I can make use of a V-I graph to determine resistance.
- I can make use of an appropriate relationship to calculate potential difference (voltage), current and resistance
- I can describe the relationship between temperature and resistance of a conductor.
- I can describe the relationship between temperature and resistance of a resistor.
- I can describe an experiment to prove Ohm's Law.

### Task 1:Label the equation



### Task 2:Try the example questions and get your teacher to check

1. A current of 0.2 A is passing through a  $33\ \Omega$  resistor. Calculate the voltage across the resistor

---

---

---

2. A component has a resistance of  $5\ \Omega$  and a voltage across it of 230 V. Calculate the current through the component

---

---

---

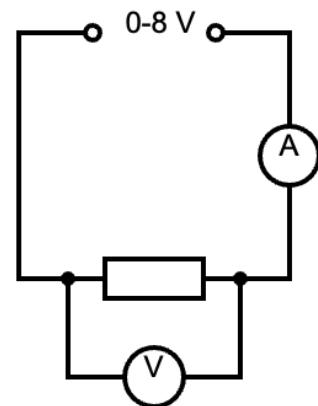
3. A resistor is required to have a current of 2 mA When a voltage of 8V is applied to it. Calculate the required resistance

---

---

---

### Task 3:Yellow Books page 45-49


## Task 4: Ohms Law Practical 1

### Aim

To Prove that current and potential difference are directly proportional for a fixed resistor.

### Method

1. Adjust supply 1- 5 V
  2. Measure V and I each time
  3. Plot a graph of V against I
  4. Gradient = R
- Complete the experiments in groups.
  - Write up your finding Individually.



## Task 5: Ohms Law Practical 2

### Aim

---

---

To discover the link between voltage and current of a nonohmic conductor

### Method

1. Adjust supply 1- 5 V
2. Measure V and I each time
3. Plot a graph of V against I

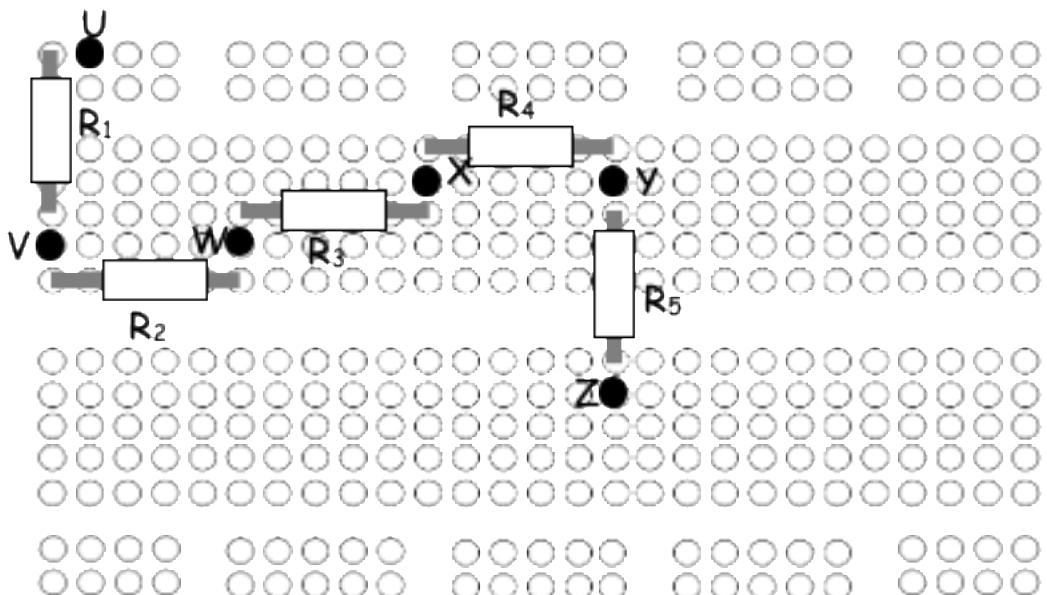
## Task 6: Answer the flowing Questions

1. How do the graphs from practical 1 and 2 compare?
- 
- 

2. Describe the relationship between temperature and resistance for a fixed resistor.
- 
- 

3. Describe the relationship between temperature and resistance for a non-ohmic conductor
- 
-

## L5 - Combining Resistors 1 (Basic)


- I know what happens in a circuit when I increase the resistance in both series and parallel circuits.
- I can predict the total resistance in a series circuit
- I can measure the total resistance in a series circuit
- I can predict the total resistance in a parallel circuit with resistors of the same value
- I can measure the total resistance in a parallel circuit with resistors of the same value

### Practical 1: Combining Resistors in Series

AIM To measure the total resistance of several resistors in series

APPARATUS a digital multimeter  
the set of resistors labelled A, B, C, D and E  
prototype board

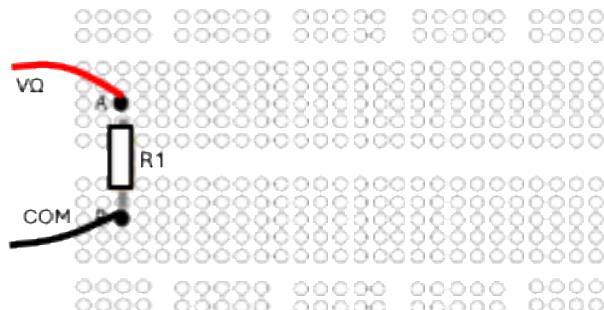
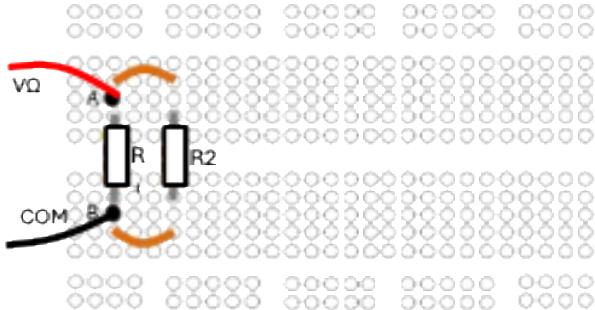
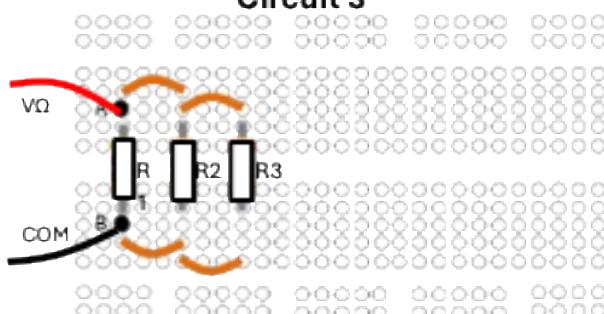
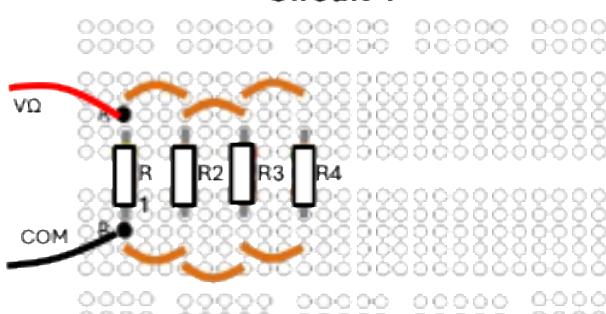
Connect the 5 resistors as shown below on prototype board:



Using an ohmmeter, complete the table below

| Meter position | Prediction ( $\Omega$ ) | Ohmmeter reading ( $\Omega$ ) |
|----------------|-------------------------|-------------------------------|
| U and W        |                         |                               |
| U and X        |                         |                               |
| U and Y        |                         |                               |
| U and Z        |                         |                               |
| V and X        |                         |                               |
| W and Y        |                         |                               |
| X and Z        |                         |                               |

### Practical 2: Resistors in Parallel





AIM

To measure the total resistance of several resistors in parallel

APPARATUS

a digital multimeter  
the set of 4 resistors of the same value  
prototype board

Connect each circuit 1 at a time:

**Circuit 1****Circuit 2****Circuit 3****Circuit 4**

Complete the table:

| Circuit | Prediction ( $\Omega$ ) | Ohmmeter reading ( $\Omega$ ) |
|---------|-------------------------|-------------------------------|
| 1       |                         |                               |
| 2       |                         |                               |
| 3       |                         |                               |
| 4       |                         |                               |

Task 1: Write a rule for resistance in series and parallel below

## L6 - Combining Resistors 2 (Tricky)

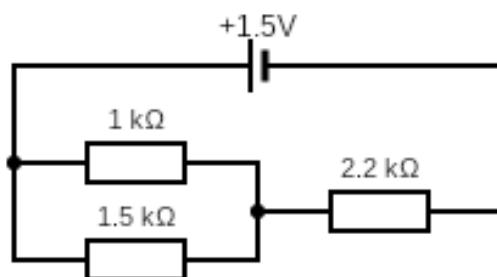
- I can solve problems involving total resistance in a parallel circuit
- I can solve problems involving total resistance in a combination circuit
- I can predict the total resistance in a parallel circuit with resistors of the different values
- I can measure the total resistance in a parallel circuit with resistors of the different values

**Task 1: Annotate the relationships below**

1. Combining resistors in \_\_\_\_\_

$$R_t = R_1 + R_2 + \dots$$

2. Combining resistors of the same value in \_\_\_\_\_


$$R_t = \frac{R_1}{\text{no. branches}}$$

3. Combining resistors of the different values in \_\_\_\_\_

$$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$

**Worked Example - Tricky**

Calculate the total effective resistance of the combination circuit below:



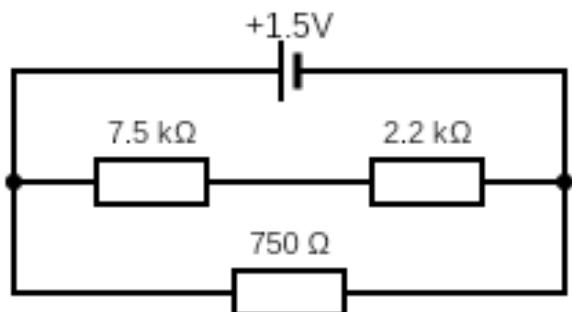
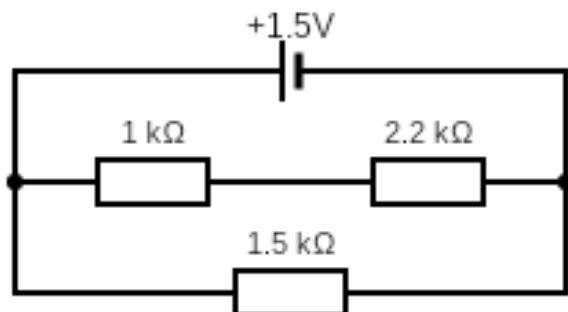
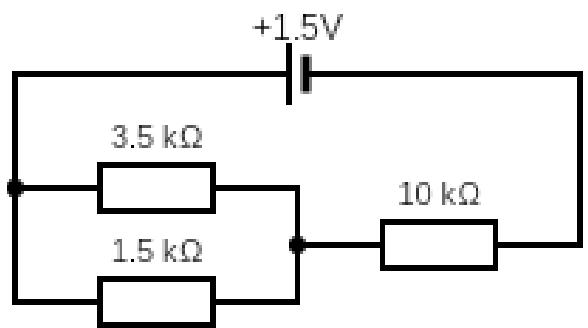
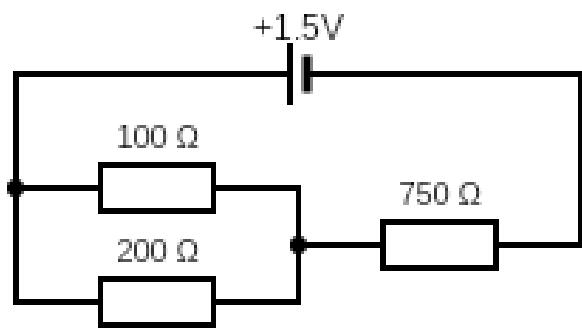
Step 1: Parallel

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$\frac{1}{R_p} = \frac{1}{1000} + \frac{1}{1500}$$

$$\frac{1}{R_p} = 0.00166 \dots$$

$$R_p = 600 \Omega$$





Step 2: Series

$$R_t = R_p + R_3$$

$$R_t = 600 + 2200$$

$$\underline{R_t = 2.8 \text{ k}\Omega}$$

Task 2: Calculate the total effective resistance for the circuits below



Task 3: Yellow books

**Practical: Resistors in Parallel**

AIM To measure the total resistance of several resistors in parallel

APPARATUS a digital multimeter  
the set of 4 resistors of different values  
prototype board  
wires

Method Connect resistors of different values in parallel on a prototype board  
Use the table below to record your predictions and results  
The diagrams on page 9 may help with designing your circuits

Complete the table:

| Resistors ( $\Omega$ ) | Prediction ( $\Omega$ ) | Ohmmeter reading ( $\Omega$ ) |
|------------------------|-------------------------|-------------------------------|
|                        |                         |                               |
|                        |                         |                               |
|                        |                         |                               |
|                        |                         |                               |
|                        |                         |                               |
|                        |                         |                               |

**Review:** Check your booklet is up to date  
Test yourself on the definitions  
Complete Electricity practice test 1  
Self-Mark Electricity practice test 1  
Fill in your learning Log

